LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc., DEGREE EXAMINATION – PHYSICS

FIFTH SEMESTER – NOVEMBER 2013

PH 5509/PH 5506/PH 3500 - OPTICS

Date : 09/11/2013 Time : 9:00 - 12:00

Dept. No.

Max.: 100 Marks

 $(10 \times 2 = 20 \text{ marks})$

SECTION - A

Answer ALL questions:

- 1. What are nodal points and nodal planes?
- 2. State the condition for achromatism of a combination of two thin lenses in contact.
- 3. Distinguish between the fringes produced by biprism and Lloyd's mirror.
- 4. What is meant by antireflection coating?
- 5. Calculate the possible order of spectra with a plane transmission grating having 6×10^5 lines per metre when light of wavelength 5500 Å is used.
- 6. Define resolving power of a plane diffraction grating.
- 7. State the law of Malus.
- 8. Define specific rotation.

Answer any **FOUR** questions:

- 9. What do you mean by metastable state?
- 10. What is the main advantage of stimulated Raman scattering?

SECTION – B

Answer any FOUR questions:	$(4 \times 7.5 = 30 \text{ marks})$	
11. (a) Explain chromatic aberration in lenses.	(2 1/2)	
(b) Derive the condition for the achromatism of two thin lenses separated by a distance. (5)		
12. How would you determine the wavelength of light using Lloyd's mirror experiment?		
13. Discuss Fraunhoffer diffraction at a circular aperture.		
14. (a) What is elliptically polarized light?	(2 1/2)	
(b) How is it prouduced ?	(5)	
15. (a) Distinguish between spontaneous and stimulated emissions.	(5)	
(b) Write a note on optical pumping.	(2 1/2)	
<u>SECTION – C</u>		

16. (a) Give the construction and working of Huygen's eye-piece, with the help of a neat diagram.

(b) Find the positions of principal points and focal points. (1.5 + 1.1/2)

 $(4 \times 12.5 = 50 \text{ marks})$

(4.5+5)

	17. (a) Describe a Michelson interferometer.	(4 1/2)
	(b) How can it be used for measuring the wavelength of light?	(8)
	18. (a) Give the theory of a zone plate.	(6)
	(b) Compare it with a convex lens.	(4)
(c) What is the radius of the first half period zone in a zone plate behaving like a convex		
	lens of focal length 40cm for light of wavelength 6000 Å?	(2 1/2)
19. (a) Describe the construction of a Nicol prism and show how it can be used as a polarizer		
	and analyzer. (2 1	/2 + 3 +3)
	(b) Distinguish between a quarter wave plate and a half wave plate.	(4)
	20. (a) Explain in brief the characteristics of a laser beam.	(4)
	(b) Describe the construction and working of He-Ne laser.	(8 1/2)

\$\$\$\$\$\$\$